- Hitunglah nilai a dan b untuk persamaan regersi linier sederhana
- Jika hipotesis penelitian menyatakan bahwa “tinggi badan seseorang berpengaruh terhadap berat badan seseorang”, ujilah hipotesis tersebut dengan menggunakan Uji T dan Uji F (tingkat keyakinan sebesar 95%)
- Hitunglah nilai r dan koefisien determinasi
- Bagaimana kesimpulannya.
Jika Y : Berat Badan Seseorang dan X : Tinggi Badan Seseorang, maka untuk mendapatkan nilai a dan b untuk persamaan regersi linier sederhana :
- Hipotesis Statistik adalah Ho : b = 0 dan Ha : b ≠ 0 (disebut uji dua arah)
- Nilai T hitung adalah : b/Sb = 0,819657/0,05525673 = 14,833613932638 = 14,834
- Nilai T tabel dengan df : 10 – 2 = 8 dan ½ α = 2,5% (uji dua arah) sebesar ± 2,306
- Karena nilai T hitung lebih besar dari pada T tabel atau 14,834 > 2,306 maka Ho ditolak, Ha diterima dan hipotesis penelitian yang menyatakan bahwa Tinggi Badan berpengaruh terhadap Berat Badan Seseorang adalah dapat diterima (dapat dikatakan signifikan secara statistik).
- Sedangkan untuk menguji secara serempak digunakan Uji F, yaitu diperoleh F hitung = 31.874,98 dan Untuk nilai F tabel dengan df : k - 1 ; n – k = 1 ; 8 dan α : 5% sebesar 5,32. Karena nilai F hitung lebih besar dari F tabel atau 31.874,98 > 5,32 maka Ho ditolak, Ha diterima dan hipotesis penelitian yang menyatakan bahwa Tinggi Badan berpengaruh terhadap Berat Badan Seseorang adalah dapat diterima.
Sedangkan berdasarkan nilai r kuadrat sebesar 96,4% menggambarkan bahwa sumbangan variabel independen (Tinggi Badan) terhadap naik turunnya variabel dependen (Berat Badan) sebesar 96,4% sedangkan sisanya merupakan sumbangan dari variabel lain yang tidak dimasukkan dalam model.
Kesimpulannya : Berdasarkan hasil pengujian hipotesis, baik Uji T maupun Uji F, diketahui bahwa Variabel Tinggi Badan Seserorang berpengaruh terhadap Variabel Berat Badan Seseorang dan pengaruhnya bersifat positif (nilai koefisien regresinya sebesar 0,819657), artinya jika seseorang mempunyai tinggi badan semakin tinggi maka akan meningkatkan berat badannya (dan sebaliknya). Berdasarkan nilai koefisien regresi tersebut dapat diketahui bahwa jika tinggi badan meningkat sebesar 10% maka berat badan akan meningkat 8,2%.
Sedangkan berdasarkan nilai koefisien korelasi dan koefisien determinasi diketahui bahwa variabel independen (Tinggi Badan) mempunyai hubungan yang kuat dan mempunyai sumbangan yang cukup besar terhadap variabel dependen (Berat Badan).